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imation of the sensitivity of failure probability with respect to design parameters. The method is estab-
lished based on a piecewise linear fitting of the limit state surface and the analytical integral of the
gradient of the failure probability with respect to parameters in the limit state function. The proposed
method presents an attractive ratio of accuracy to computational cost. The general framework is scalable
such that, by adjusting its complexity, different levels of accuracy can be achieved. The method is espe-
cially suitable to be implemented in gradient-based routines for solving reliability-based design opti-
mization problems where accuracy of the parameter sensitivity is essential for convergence to an
optimal solution.
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1. Introduction

The primary concern of reliability analysis is the approximation
of the failure probability Pf or the equivalent generalized reliability

index b, which is defined as b ¼ U�1ð1� Pf Þ [1], where U�1ð�Þ is the
inverse function of the cumulative distribution function (CDF) of
the standard normal distribution. In addition, computation of sen-
sitivity of failure probability to changes in parameters that influ-
ence the failure probability is an important aspect as this
quantification provides insights on how the failure probability
might change with changes in the values of some parameters.
The partial derivatives of failure probability with respect to these
parameters are called parameter sensitivity [1]. The parameters
are categorized into two groups [2]. One group contains the param-
eters that appear in the probability density functions (PDF) of ran-
dom variables and they are usually called distribution parameters.
The other set of parameters, called design parameters, appear in
the limit state function, a mathematical description that defines
whether the component or system is safe or not. In this paper, we
propose an efficient numerical method to approximate the parameter
sensitivity of the failure probability with respect to design parameters.

The motivation of this work is due to the increasing demand for
improvement of engineering designs based on reliability analysis,
for example, either reducing cost without sacrificing reliability or
simply increasing reliability of current design, which can be
expressed mathematically as an optimization problem [11], called
reliability-based design optimization (RBDO) [12–20]. In the RBDO
formulation, the aforementioned design parameters are treated as
design variables. Most RBDO problems are formulated as optimiza-
tion problems with probabilistic constraint(s). The sensitivity of
the probabilistic constraint is particularly important if one wants
to use efficient gradient-based routines to solve the design opti-
mization problem.

There are mainly two major gradient-based approaches for
RBDO in the literature: the Reliability Index Approach (RIA), which
explicitly uses the gradient of probabilistic constraint(s) in the
optimization; and the Performance Measure Approach (PMA),
which constructs target performance function(s) as equivalent
deterministic constraint(s) by inverse reliability analysis [12],
and thus the gradient of probabilistic constraint(s) is involved
implicitly. Among different alternatives, currently the two
approaches are mostly implemented in conjunction with first-
order reliability method (FORM) and FORM-based expressions for
sensitivity [13–19]. To improve the solutions, heuristic updates
of the failure probability using, for example, second-order reliabil-
ity method (SORM), Monte Carlo simulation (MCS), and other reli-
ability methods, are used in many RBDO approaches [19,16],
however, in general, the approximations of the sensitivity of failure
probability in these approaches are still based on FORM. Another
type of gradient-based approach employs the sample average
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approximation (SAA) where the failure probability and its sensitiv-
ity calculation are both carried out using MCS-based techniques
[6], which require very high computational cost but could yield
quite accurate estimation of the sensitivity.

Although numerical estimation of failure probability has been
studied extensively, there are not many papers in the literature
that focus on the numerical approximation of the parameter sensi-
tivity. Early work can be found around the year 1990, mostly from
a theoretical point of view. For instance, Hohenbinchler and Rack-
witz [2] derived the expressions for parameter sensitivity of the
estimated failure probability obtained by FORM with respect to
both distribution and design parameters. In other words, the
expressions are only exact when the limit state function is linear.
Breitung [3] derived an analytical expression for the parameter
sensitivity of failure probability with general limit state functions,
and he suggested an asymptotic approximation, which has similar
terms as the expression in [2]. There is also a study on the deriva-
tives of probability functions done by Uryasev [4]. However,
although analytical expressions for the parameter sensitivity of
the failure probability are available, usually precise numerical
evaluation of the sensitivity is not possible, similarly to the case
of failure probability evaluation.

Some numerical methods have been developed to approximate
the parameter sensitivity. An efficient method is available by
implementing the expressions in [2], which are by nature an
approximation. The advantage is that it is so simple that it can
be computed with very low computational cost. However, the
expressions can be quite inaccurate when the nonlinearity of the
limit state function is significant. Karamchandani and Cornell [5]
developed a method that approximates the parameter sensitivity
with respect to distribution parameters that can take second order
effect into account, based on SORM and the finite difference
method. In addition, MCS-based stochastic methods are often used
for approximating the sensitivity of probability [6–10]. For exam-
ple, the sample average approximation was used for both compo-
nent and system reliability constrained problems by Royset and
Polak [6,8,9]. Recent theoretical advances by van Ackooij and Hen-
rion [10] provided representations of the gradients to convex prob-
ability functions as integrals with respect to uniform distribution
over the unit sphere.

In this paper, we focus on the approximation of the parameter
sensitivity of component failure probability since this is the foun-
dation for extensions to system reliability analysis. The proposed
method of segmental multi-point linearization (SML) is established
to estimate the sensitivity of failure probability with respect to
design parameters. The method can be directly employed in the
framework of RIA for RBDO. Thus the main purpose of this work
is to provide an alternative method, that is more accurate than
FORM-based approximation, but requires significantly less compu-
tational cost than approximations based on MCS, as illustrated by
Fig. 1. Furthermore, the theory for the method allows many varia-
tions to match different requirements on accuracy for a variety of
problems. This paper is tailored towards the implementation of the
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Fig. 1. Conceptual comparison of different approximation approaches for sensitiv-
ity of failure probability.
proposed method in the context of RBDO. However, we would like to
mention that the method for sensitivity analysis is independent from
this particular application. Three appendices supplement this paper.
The nomenclature used is given in Appendix A. A brief derivation of
the parameter sensitivity of the failure probability is given in
Appendix B. A pseudo code for the orthogonal fitting SML is pro-
vided in Appendix C.
2. Importance of accurate estimation of sensitivity in RBDO

One problem with FORM-based approaches in RBDO is that the
error in the approximate sensitivity of the probabilistic constraint
can lead the optimization to converge to non-optimal solutions.
This will be investigated by analyzing two popular approaches of
RBDO, namely FORM-based RIA and PMA, via the well-known Kar
ush–Kuhn–Tucker (KKT) optimality conditions of the approaches.
Consider a generic formulation of RBDO problems with one relia-
bility component:

min
x

f ðxÞ

s:t: Pf ¼
Z
gðv;xÞ<0

f vðvÞdv 6 Pt
f

hðxÞ 6 0

ð1Þ

where Pt
f is the target failure probability; x is the vector of design

variables (i.e. design parameters); v is the vector of random vari-
ables with distribution described by the PDF f vðvÞ; f ðxÞ is the objec-
tive function; gðv;xÞ is the limit state function; and hðxÞ is a set of
deterministic constraints such as lower and upper bounds of x. Reli-
ability methods often require a probability preserving transforma-
tion u ¼ TðvÞ, where u is a vector of independent standard
normal random variables. Replacing v by T�1ðuÞ defines the limit
state function in an equivalent form Gðu; xÞ ¼ gðT�1ðuÞ;xÞ, which
is the function that is eventually used for reliability analysis. The
formulation (1) would accordingly become:

min
x

f ðxÞ

s:t: Pf ¼
Z
Gðu;xÞ<0

unðuÞdu 6 Pt
f

hðxÞ 6 0

ð2Þ

where unð�Þ is the multi-variate standard normal PDF with uncorre-
lated elements and n is the number of random variables. Equiva-
lently, the constraint on failure probability can be expressed in
terms of generalized reliability index, which is defined as
b ¼ U�1ð1� Pf Þ.

Mathematically, the KKT optimality conditions of the RBDO
model described in (2), are:

(1) Stationarity condition: rxf þ krxPf þ
P

cirxhi ¼ 0
(2) Primal feasibility: Pf � Pt

f 6 0;hi 6 0 8i
(3) Dual feasibility: k P 0; ci P 0 8i
(4) Complementary slackness: kðPf � Pt

f Þ ¼ 0; cihi ¼ 0 8i

where k and ci’s are the Lagrange multipliers. The KKT conditions
are necessary for a solution to be optimal. Because for most RBDO
cases, Pf and rxPf can only be evaluated approximately, then the
KKT conditions are only approximately satisfied at the optimized
solution. Different RBDO algorithms have different approximations
about the KKT conditions in the end. Thus they may converge to
different solutions. However, when the probabilistic constraint is
active in an optimization problem, PMA and RIA will converge to
the same solution if they are both based on FORM as they share
the same approximations of the KKT conditions.
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Fig. 2. Trajectory of the optimization process of RIA and PMA in the standard
normal random space.
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In the RIA formulation, the reliability constraint is considered
directly. The sensitivity of failure probability with respect to design
variables is used to obtain the search direction in optimization. The
expression for the gradient rxb1 is derived by Hohenbichler and
Rackwitz [2]:

rxb1 ¼ 1
kruG

�krxG
� ð3Þ

where b1 ¼ ku�k which is the approximate reliability index by
FORM; and G� denotes Gðx;u�Þ, which is the limit state function
evaluated at the design point u� as defined by Eq. (4) with current
design x, where it is evaluated.

u� ¼ argmin
u

fkuk j Gðu;xÞ ¼ 0g ð4Þ

As Pf ¼ 1�UðbÞ, then we have dPf =db ¼ �uðbÞ. By applying the
chain rule, we obtain:

rxPf � rxPf ;1 ¼ � uðb1Þ
kruG

�krxG
� ð5Þ

where the notation Pf ;1 denotes the FORM approximation. The KKT
stationarity condition of FORM-based RIA is then given by:

rxf þ kRIA � uðbÞ
kruG

�krxG
�

� �
þ
X

cirxhi ¼ 0 ð6Þ

As stated before, Eq. (5) is the sensitivity of the approximate
failure probability obtained by FORM [13]. In general, differentia-
tion of an approximate expression enlarges the error [23]. There-
fore, even in the cases that FORM provides a good approximation
of Pf , the sensitivity rxPf calculated by FORM-based approxima-
tion could have a relatively large error.

The FORM-based PMA formulation applies an inverse FORM
reliability analysis. The approach defines a target performance
function GtðxÞ ¼ Gðx;utÞ and incorporates it as a deterministic con-
straint of the optimization, where ut is an estimation of the design
point of the optimal design, which is also called the most probable
point (MPP), and is updated at each iteration as:

ut ¼ argmin
u

fGðu;xÞ j kuk ¼ bt ¼ U�1ð1� Pt
f Þg ð7Þ

Usually an approximation of the MPP ut is used to reduce com-
putational cost. The advantage of PMA is that it is not sensitive to
the accuracy of ut . As a result, many single loop algorithms, which
involve a coarse approximation of ut , are developed based on PMA
[14,16]. However, when the optimum is achieved and the proba-
bilistic constraint become active, ut converges to the design point
of the final design [12]. The KKT stationarity condition of the
PMA becomes:

rxf þ kPMAð�rxG
�Þ þ

X
cirxhi ¼ 0 ð8Þ

Eqs. (6) and (8) are the same, except for the different coeffi-
cients of the second term. If the probabilistic constraint is active
and the design point is unique, the two approaches should yield:

kPMA ¼ uðbÞ
kruG

�k k
RIA ð9Þ

Given that the probability of failure are both approximated by
FORM, the KKT conditions of RIA and PMA become identical. Hence,
although PMA tends to be more robust than RIA, it does not improve
the result of the optimization because it is mathematically equiva-
lent to RIA when the problem has active probabilistic constraint and
the corresponding design point is unique. If we look into the itera-
tion process, the u� for RIA and ut for PMA are at different coordi-
nates until they converge to the same design. The trajectories of
RIA and PMA in the random space are illustrated in Fig. 2, where
x� refers to the ‘‘optimal” design, x0 is the initial design, and xi rep-
resent an intermediate design in the optimization process.

Many algorithms, which are developed based on RIA and PMA,
incorporate SORM, MCS or other reliability methods to improve the
approximation of Pf (i.e. the primal feasibility condition) [19,21],
but little attention has been paid to the accuracy of the sensitivity
which may be more influential with respect to the optimal solu-
tion. Furthermore, the error in the sensitivity is cumulative
because it determines the search direction at each iteration of
gradient-based optimization schemes.
3. Segmental multi-point linearization for approximating
sensitivity and failure probability

References [3,4] provide the analytical expression for the sensi-
tivity of failure probability with respect to design parameters,
which has the following form:

rxPf ¼ �
Z
S

unðuÞ
kruGkrxGdS ð10Þ

For the sake of completeness and clarity, we provide a brief deriva-
tion of Eq. (10) in Appendix B. In most cases, the integral in Eq. (10)
is not numerically tractable because it is a multi-dimensional sur-
face integral. We propose an efficient numerical method for the
approximation of this surface integral. As motivated by the afore-
mentioned discussion, the method requires much less computa-
tional effort than MCS techniques and the accuracy of the
approximation is higher than FORM-based approximations (i.e.
Eqs. (3) and (5) – see Fig. 1).

Calculation of the surface integral of Eq. (10) is challenging both
analytically and numerically. However, if the surface is composed of
a set of pieces of hyperplanes described by affine functions, then Eq.
(10) can be analytically simplified to probability evaluation problems.
Thus the idea of the proposed method is to fit the limit state surface
with hyperplane segments in a piecewise manner. Then we can per-
form the integration on each plane segment without much effort and
compute the summation of the individual integrals as the approxima-
tion of the sensitivity in Eq. (10).

Let’s denote the limit state surface as S and the piecewise linear
fitting as Swhere each of the hyperplane segments is denoted as Si.
For each hyperplane segment Si, which is assumed to be described
by an affine function Gi, the gradients ruGi and rxGi will be con-
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stant vectors over the corresponding surface. Thus, they can be
taken out of the integral, which leads to the following expression:

rxPf ;i ¼ � 1
kruGik

rxGi

Z
Si

unðuÞdSi ð11Þ

Since all fitting segments are pieces of hyperplanes, each hyper-
plane segment naturally has piecewise linear boundaries, thus its
geometry appears as polygons. To further simplify Eq. (11), for each
of the hyperplane segments, we can then rotate the coordinates of
the standard normal space such that the positive direction of the
first axis is along the opposite direction of the normal direction of
the hyperplane segment. Because the function that defines the
hyperplane is linear, the normal direction of the hyperplane is in
the same direction of ruG, as shown in Fig. 3. Due to the rotational
symmetry of the standard normal space, we can rewrite Eq. (11) by
separating the new coordinate u0

1 from the integral:

rxPf ;i ¼ � uðbiÞ
kruGik

rxGi

Z
Si

un�1ðû0Þdû0 ð12Þ

where bi is the distance from the origin to the hyperplane, and
û ¼ ½u0

2;u
0
3; . . . ; u

0
n�T. The surface integral on one of the hyperplane

segments is then simplified to the probability evaluation ofR
Si
un�1ðûÞdû0 where the integration domain is composed of a polyg-

onal hyperplane segment that spans in the reduced (n� 1) dimen-
sional space of û0. Assuming that we have a proper piecewise linear
fitting of the limit state surface where each piece of hyperplane seg-
ments is representative of a portion of the limit state surface, then
we are able to construct an approximation of rxPf , based on Eq.
(12), that has the form of the following weighted sum:

rxPf �
Xp

i¼1

WirxGi ð13Þ

where

Wi ¼ � uðbiÞ
kruGik

Z
Si

un�1ðû0Þdû0 ð14Þ

Notice that the rotated new coordinate system u0 is different for
each hyperplane segment.

A proper fitting scheme is essential to the approximation. In
general, each hyperplane segment can be completely defined by
a fitting point, the normal direction of the hyperplane, and the
boundary of the segment. A fitting point is a point that is on the
original limit state surface where the fitting hyperplane segment
has to pass. It is important to notice that, due to the exponential
decay of the probability density in the standard normal space,
we only need to focus on the region that is close to the origin
where the probability density is high. According to Eq. (10), the
integrand becomes too small to make an impact on the overall
1u

 1u’û

û’

O
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Fig. 3. Illustration of the calculation of Eq. (10) on a hyperplane segment.
integration when it is evaluated far from the origin. Also, as we
increase the number of fitting hyperplane segments, the accuracy
of this approximation can be improved.

3.1. Tangent fitting scheme

In order to approximate the limit state surface, a straightfor-
ward thought is to let Gi be the first order expansion of the limit
state function G at the corresponding fitting point ui, which
ensures that, in the neighborhood, the linear approximation of
the original limit state surface is quite accurate. That is,

rxGi ¼ rxGðui;xÞ and ruGi ¼ ruGðui; xÞ ð15Þ
where x is the vector of current design variables. The boundaries of
a segment are determined by the intersections with other seg-
ments. This leads to a tangent fitting scheme as shown in Fig. 4.
In particular, it should be noted that if we use only one hyperplane
to fit the limit state surface by taking the tangent fitting at the design
point, then from Eq. (13) and (14) we can obtain Eq. (5), indicating that
the FORM approximation can be seen as a special case of the proposed
method. If the locally most central points are selected to be the fit-
ting points, the tangent fitting share the same approximation of the
limit state surface as the multi-point FORM [1], but here the
approximation of the limit state surface is primarily used to esti-
mate the sensitivity of the failure probability rather than the failure
probability itself.

However, in high dimensional random space, the tangent fitting
scheme makes it quite difficult to track the boundaries of the
hyperplane segments. To overcome this challenge, we can pre-
scribe the normal directions of the hyperplane segments and then
project the gradient ruG of the original limit state function onto
the prescribed normal directions as the gradientsruGi’s for the lin-
ear approximations. Since the design variables x are not in the ran-
dom space of u, the term of rxGi in Eq. (14) will not be affected by
this projection in the random space and thus we can still obtain
first order accuracy for rxG. In other words, to define the affine
function Gi for each hyperplane segment, we take

ruGi ¼ ðnT
i ruGðui; xÞÞni ð16Þ

where ni is the prescribed normal direction for the ith plane seg-
ment, and keep rxGi as in the tangent fitting scheme. Hence, this
compromise only affect the computation of the weights, however,
for a hyperplane segment with fitting point ui, the angle between
the gradient ruGðui;xÞ and normal direction ni should not be too
large in a relative sense, otherwise the weights can be misleading.
For example, in an extreme case, if the two vectors are orthogonal
to each other, the corresponding weight will be infinitely large.
There are many alternative ways to specify the normals and, differ-
ent choices of the normals lead to different fitting schemes.
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Fig. 4. Illustration of alternative tangent fitting SML.
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3.2. Step fitting scheme

Another attempt for a proper fitting scheme is the step fitting.
We can fit the limit state surface by a piecewise ‘‘constant” func-
tion where each hyperplane segment basically has the same nor-
mal direction. Also due to the exponential decay of probability
density, only the limit state function that is in the central region
would be fitted with the step function. Fig. 5 illustrates the idea
of the step fitting scheme. One can choose how many fitting points
to use and prescribe the boundaries by defining the length of each
side of the step segments. The normals of the step segments need
not to be in the direction of any of the original axes of the u-space.
Rotation of the standard normal random space is allowed, for
example, to make the rotated first axis align with the direction of
the design point. In addition, this scheme would simplify the prob-
ability evaluation part in the calculation of the weights to closed
form expressions because the edges of each plane segment are per-
pendicular to each other. For example, in Fig. 5, if there are only
two random variables such that ui ¼ u1 and uj ¼ u2, the weight
for plane segment 4 is simply given by

W4 ¼ uðb4ÞðUðu1;4Þ �Uðu1;3ÞÞ=kruGðu4; xÞnk ð17Þ
Furthermore, this fitting scheme is scalable. If we increase the num-
ber of fitting points, i.e., make each step plane segment sufficiently
small, and evaluate the probability integration part in Eq. (11) using
MCS, we can recover the MCS-based estimation expression of rxPf

as proposed in reference [6]. The problem with this scheme is that
sometimes the result can be quite inaccurate due to a potentially
large angle between ruGðui;xÞÞ and n.

3.3. Orthogonal fitting scheme

Another scheme that is recommended is called orthogonal fit-
ting. The basic idea is to fit the limit state surface with plane seg-
Table 1
Procedure for the orthogonal fitting scheme.

1. Select a reference point on the limit state surface (possibly but not
necessarily the design point)

2. Rotate the coordinates such that the reference point lies on the positive
part of the first axis of the new coordinates

3. Search for the intersection points of the new axes and the limit state
surface within radius r ¼ k1b1 from the origin in both positive and
negative directions, where k1 is a user defined parameter and b1 is the
distance from the reference point to the origin

4. Define the plane segment i by its fitting point with the normal ni being
the direction of the axis on which the fitting point lies

5. For the half axis �e0j , that has no intersection point within the search

region, fit a plane segment with normal direction along e01 direction at the
off-axis point uj (denote as ujþn for �e0j) with coordinate �k2b1e0j þ bje01
ments that have normals along an orthogonal basis of the space
instead of sharing the same normal direction as in the step fitting
to avoid large angles between ruGðui;xÞÞ and ni. The general pro-
cedure is described in Table 1 and illustrated in Fig. 6:

The values for k1 and k2 are determined based on heuristic rules.
The parameter k1 determines the size of the search region for the
intersection point, and it is suggested to have the value such that
uðk1b1Þ=uðb1Þ ¼ � where � is a small value (e.g., � ¼ 0:1) to ensure
that the search region is neither too large nor too small. On the
other hand, k2 is used to ensure that the off-axis fitting points stay
not too far from the origin but also not too close to the reference
point. In general, we recommend to set k2 as the minimum
between 1 and 3=b1, which is the same rule as in the point-
fitting SORM proposed by Der Kiureghian et al. [22], except that
the reference point is not necessarily the design point. In addition,
a partition coefficient g is used to determine the boundaries of the
plane segments determined by the reference point and the off-axis
fitting points. In practice, the value of g should take a value
between 0.5 and 1.0 in order to take into account the exponential
decay of probability density from the origin. In this paper, 0.7 is
used for all numerical examples. The rotation in step (2) can be
accomplished using any QR factorization method, like the Gram-
Schmidt algorithm [23]. After all the parameters and the new
orthogonal basis are defined, finding the fitting points is only a
problem of solving 1-D nonlinear equations. There are many effi-
cient and robust algorithms available, such as bisection method
[23]. A pseudo-code for the segmental multi-point linearization
with orthogonal fitting scheme is given in Appendix C.

3.4. Orthogonal fitting remarks

The choice of the reference point influences accuracy of the SML
approximation obtained by the orthogonal fitting scheme. Intu-
itively, the reference point should be close to the origin. The design
point is a good candidate for the reference point. However, in some
particular cases, other choices of the reference point would actu-
ally make the approximation more accurate. For example, when
the limit state surface has a symmetry axis that passes through
the origin, then it would be beneficial to set the reference point
along this symmetry axis. This is due to the fact that, when the
limit state surface is symmetric, according to Eq. (10), the two
halves of the limit state surface on both sides of the symmetry axis
are of same importance to the integral. A reference point on the
symmetry axis makes the fitting points symmetrically distributed
on the two halves and hence, in the approximation, the two halves
of the limit state surface are also of same importance. Another
question is whether performing a second rotation of the random
space in step (2), such that the fitting points are along the principle
axes of curvature, would be beneficial to accuracy. The second
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rotation is the same as the second rotation in the traditional SORM.
This will be elaborated in the second numerical example. One
shortcoming of this fitting scheme is that it is not scalable with
the current formulation. The number of fitting points is always
2n or (2n� 1), where n is the dimension of the random space. Thus,
adding more fitting points to increase the accuracy of the approx-
imation is not automatically supported by this scheme. Sometimes
the off-axis fitting points can be neglected, for instance, when the
limit state function appears like a sphere or ellipsoid. This corre-
sponds to a reduced version of the orthogonal fitting scheme [24].

3.5. Approximation of failure probability

Each fitting scheme provides an approximation of Pf , which is
consistent with the approximated limit state surface. Based on
existing approximation of the limit state surface, computing the
approximate failure probability is a relatively light task. The output
is observed to be generally better than FORM. Thus, one can
approximate both the gradient of the failure probability and the
failure probability itself using the SML method. Alternatively, one
may also couple other reliability methods, for example SORM,
point-fitting SORM and MCS with the SML method for approximat-
ing the failure probability, and only use SML for approximating the
sensitivity of failure probability.
4. Numerical examples

Several numerical examples are provided to assess the various
features of the SML method. The examples proposed are the
following:

1. Investigation of differentmethods for sensitivity approximation.
2. Investigation of orthogonal fitting SML and assessment of the

second rotation of the random space.
3. Design optimization of a reinforced concrete girder.
4. Application to reliability-based topology optimization.

In the first example, we compare various methods to estimate
the gradient of failure probability (e.g. FORM, MCS, and SML) and
demonstrate different fitting schemes of the proposed SML
method. The second example addresses the orthogonal fitting
SML and assesses the second rotation of the random space (see
Table 2). The third example is a practical structural problem deal-
ing with the optimal design of a reinforced concrete girder, which
was adopted from Royset and Polak [6]. Finally, the fourth example
presents an application of the SML method to reliability-based
Table 2
Comparison of different reliability analysis methods for limit state functions at x1 ¼ 0:15.

Case Parameter No rotation 1 Ro

Plain MCS MCS-SAA FORM PFSO

(c.o.v.=0.05) (N = 25,000) Breit

g1 b 2.50 2.52 2.99 –
a NA 0� 27.24� NA
krxPf k NA 5.09e�02 6.08e�03 NA

g2 b 2.52 2.53 2.90 2.37
a NA 0� 71.08� NA
krxPf k NA 4.95e�02 5.88e�03 NA

g3 b 2.74 2.74 3.00 2.62
a NA 0� 69.71� NA
krxPf k NA 2.46e�02 4.43e�03 NA

g4 b 2.64 2.65 3.00 2.39
a NA 0� 70.04� NA
krxPf k NA 3.04e�02 4.43e�03 NA

* Note: This angle measures the rotation angle of second rotation after the first rotati
topology optimization on discrete structures discretized by means
of a ground structure approach [25,21,26].

4.1. Investigation of various methods for sensitivity approximation

We make a comparison of a variety of methods to estimate the
gradient of failure probability, namely, FORM (i.e. Eq. (5)), MCS
employed in SAA [6], and the proposed SML method. We also
demonstrate various fitting schemes of the SML method (see Sec-
tions 3.1 to 3.4) in this example.

Consider a limit state function that is defined in the standard
normal space as follows:

Gðx;u1;u2Þ ¼ 3� u2 � xu2
1 ð18Þ

where x is the design parameter, and u1 and u2 are random vari-
ables. The constant 3 is selected to make the failure probability
Pf ¼ PðG < 0Þ around 0.0013, which is a typical value for failure
probability in engineering design problems. This limit state function
is an exemplary quadratic limit state function, which has also been
used as benchmark problems in other papers [22,27].

The fitting schemes being compared are tangent fitting (TF)
scheme, step fitting (SF) scheme and orthogonal fitting (OF)
scheme, as described in the previous section. The fitting points
for the tangent fitting scheme are taken as the same as the fitting
points for the orthogonal fitting scheme with the reference point
along the symmetry axis. For the SML method with step fitting,
the fitting points are chosen to be 9 points that are equally spaced
in u1 from �4.5 to 4.5. Each step segment has the same length
except the two end step segments which are extended to infinity.
The orthogonal fitting scheme is implemented with two variations:
one takes the reference point at a fixed point (0,3) which is along
the symmetry axis of the limit state curve; the other takes the
design point as the reference point. The improved HLRF algorithm
[28] is employed to find the design point. Notice that when x
becomes large, there are two symmetric design points for this
example, however, as a numerical optimization algorithm, the
improved HLRF algorithm is only able to find one of them.

Fig. 7 shows the approximations of dPf =dx by the different
methods for different values of x. The exact solution is obtained
by direct numerical integration of Eq. (10), which can be done in
this example since limit state surface is a one dimensional curve.
In most application, it is very difficult to perform the numerical
integration. The Monte Carlo estimation is conducted with 5000
simulations. The corresponding estimation of generalized reliabil-
ity index b is also plotted in Fig. 8. Similarly, the exact solution is
obtained by direct numerical integration.
tation 2 Rotations

RM SML-OF SORM SML-OF

ung Tvedt Breitung Tvedt

2.51 2.59 2.48 2.61 2.75
NA 4.68� NA NA 3.84� (48.69�*)
NA 4.88e�02 NA NA 3.13e�02

2.51 2.59 3.83 3.87 2.52
NA 5.12� NA NA 2.29� (140.87�)
NA 4.36e�02 NA NA 5.31e�02

2.74 2.74 2.63 2.75 2.74
NA 6.52� NA NA 6.38� (89.99�)
NA 3.36e�02 NA NA 3.30e�02

2.57 2.65 2.63 2.75 2.65
NA 4.80� NA NA 4.91� (90.00�)
NA 3.85e�02 NA NA 3.82e�02

on of the random space.
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One can observe that in this example, FORM cannot provide
accurate approximations for the sensitivity dPf =dx. The MCS
employed in the sample average approximation is quite accurate
for both dPf =dx and b, but it is expensive in terms of computational
cost. The approximated dPf =dx by step fitting SML matches the
exact value quite well when x < 0:4. The error then becomes large
due to the increasing angle between the ruG at the fitting points
and the prescribed normal of plane segments. As expected, the tan-
gent fitting SML provides the best approximation about dPf =dx
among all fitting schemes of the SML method, with an accuracy
comparable to the estimation by MCS. The two orthogonal fitting
schemes are both relatively accurate in general. Although not as
accurate as the tangent fitting, the approximation are much sim-
pler to construct especially in high dimensional random space.
The jump in the curve for the orthogonal fitting with fixed refer-
ence point is due to the sudden switch of the fitting points from
off-axis points to intersection points as the curvature becomes
large. Both of the two orthogonal fitting schemes provide better
approximation about Pf than FORM. Since the fixed reference point
(0,3) is on the symmetry axis of the limit state surface, the orthog-
onal fitting scheme with fixed reference point has a better overall
accuracy than the other variation.
4.2. Investigation of orthogonal fitting SML

This example is to examine the effect of the aforementioned
second rotation on the accuracy of SML estimation. We consider
four limit state functions defined with original random variables
denoted as v1;v2 and v3:

g1ðv;xÞ ¼ x3 � v3 � x2v2
2 � x1v2

1

g2ðv;xÞ ¼ x3 � v3 � x2v2
2 � x1v2

1 þ 0:1 sinð10v2Þ sinð10v3Þ

g3ðv;xÞ ¼ x3 � v3 � x2v2
2 � 0:2x1v3

1

g4ðv;xÞ ¼ x3 � v3 � x2v2
2 � 0:1x1v4

1

where x1; x2 and x3 are the design variables. In this example, the
random variables have the same marginal standard normal distri-
bution, and v2 and v3 are correlated with a correlation coefficient
0.2. In function g2, we introduce an artificial sinusoidal ‘‘noise” fol-
lowing similar manner as in the paper in which the point-fitting
SORM is proposed [22]. The coefficients of 0.2 and 0.1 that applies
to the last term of g3 and g4 are just to moderate the steep change
of value for high order polynomial functions such that the four limit
state functions yield similar failure probability but have different
shapes of limit state surfaces. The value of x2 is taken as 0.15 and
x3 ¼ 3:0. Various values of x1 are tested in the investigation. Fig. 9
depicts the corresponding limit state surfaces in the standard nor-
mal random space after transformation of the random variables
for the case x1 ¼ 0:15.

The difference in the two orthogonal fitting SMLmethods is that
for one of them we just do the standard procedure as described in
Section 3, however, for the other one, after step (2), we perform
another rotation that makes the new coordinates to be along the
principle axes of curvature at the reference point. This can be done
by doing eigenvalue analysis of the Hessian of the limit state func-
tion evaluated at the reference point. Since we select the design
point as the reference point in this example, the second rotation
will be the same as the one in the traditional SORM. The obtained
results by the orthogonal fitting scheme with 1 rotation and 2 rota-
tions are also compared with the approximated gradient obtained
by FORM. The comparisons are made through the relative angle a
between the approximation and the gradient estimated by MCS
as in [6] using 25,000 Monte Carlo simulations which is expected
to be very close to the actual gradient. We use the maximum num-
ber of simulations as suggested in the paper [6] which, equals
25,000. In optimization, the direction of an approximate gradient
is the main concern about its accuracy, since most modern opti-
mization algorithms employ techniques to adaptively determine
the step size, which means that the norm of the gradient is not
as important as its direction in an optimization. Therefore, the
angle a serves as a good measure of accuracy in the approximation
of gradient of failure probability with respect to design variables
for optimization applications. The smaller the angle, the more
accurate the approximation is. Fig. 10a shows the values of a for
limit state function g1 with different values of x1. For limit state
function g2; g3, and g4, the comparisons of a are shown in
Fig. 10b–d. From the result, we can see that the two orthogonal fit-
ting SML methods have overall similar errors. The second rotation
does not show a significant benefit to the accuracy of the approxi-
mation. In addition, since the second rotation depends on local
information of the limit state function, we can observe that accu-
racy of the orthogonal fitting SML with 2 rotations was affected
by the ‘‘noise” in the limit state function as shown in Fig. 10b. Thus,
given that the second rotation is obtained by computationally
expensive eigenvalue analysis of the Hessian matrix, the imple-
mentation of the second rotation in SML method is not included



Fig. 9. (a) G1ðu; xÞ ¼ 0. (b) G2ðu; xÞ ¼ 0. (c) G3ðu; xÞ ¼ 0. (d) G4ðu; xÞ ¼ 0.
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in the proposed method. The overall accuracy of the approximation
obtained by standard orthogonal fitting SML method is signifi-
cantly better than the FORM-based approximation. For most opti-
mization problems, the accuracy of the sensitivity approximation
by the orthogonal fitting SML should be sufficient to lead to conver-
gence of the optimization to the neighborhood of a real optimum.

The approximations of Pf are also given as shown in Fig. 11 in
terms of reliability index b. FERUM [29] is used to perform FORM,
SORM, point-fitting SORM (PFSORM), and plainMonte Carlo simula-
tion in this example. The plain MCS is conducted with c.o.v. of 0.05
(not a fixed number of simulations) sincewewant a rational estima-
tion of the failure probability as a standard reference for the compar-
ison, and the numbers labeled in the figures shows the number of
simulations performed for the plain MCS to achieve the required c.
o.v. The numerical values can be found in Table 2 for the case
x1 ¼ 0:15. For SORM and point fitting SORM, only the approxima-
tions calculated by Tvedt integration is plotted in Fig. 11, as the Bre-
itung’s asymptotic formula might fail to be evaluated under some
negative curvatures [30]. The result indicates that the point-fitting
SORM would be a good choice for approximating the failure proba-
bility that can be easily coupled with the SMLmethod if it is used to
estimate the sensitivity only. The point-fitting SORM and SML could
also share some of the fitting points, such that we can save compu-
tational cost. Besides, the approximation of Pf by the SMLmethod is
also generally accurate and better than traditional FORM. Depend-
ing on the requirements on the accuracy of probability estimation,
one can choose any applicable methods for approximation of the
failure probability. For the sake of robustness and efficiency, the
author would suggest that in a design optimization problem, one
should use the SML for both approximation of rxPf and Pf until
the optimization is close to convergence, and then use other reliabil-
ity methods such as point-fitting SORM and MCS to refine the
approximation of Pf . A good indication of the time to switch can be
the time when the change in the objective of the optimization
becomes small among iterations.
4.3. Design of reinforced concrete girder

This example adopted from Royset and Polak [6] deals with the
optimal design of a reinforced concrete girder. Consider a simply
supported highway bridge that is made by reinforced concrete
with a T-shaped cross section as shown in Figs. 12 and 13. The
material and load data are the same with the original example in
[6]. Detailed description of the problem can be found in [6,31].
The design variables are x ¼ ½As; b;hf ; bw;hw;Av ; S1; S2; S3�, where
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Fig. 10. The measured angle a between the approximate gradient and the actual gradient of Pf with respect to x for: (a) g1 (G1), (b) g2 (G2), (c) g3 (G3), (d) g4 (G4).

K. Liu et al. / Structural Safety 62 (2016) 101–115 109
As is the area of longitudinal reinforcement, b and hf are the width
and thickness of the flange respectively, bw and hw are the width
and depth of the web, Av is the area of the vertical reinforcement
which equals twice the cross section area of each stirrup, and
S1; S2 and S3 are the three different spacings of the stirrups. The
original random variables are v ¼ ½f y; f 0c; PD;ML; PS1; PS2; PS3;W� as
defined in Table 3.

The optimization problem is formulated as a CRBDO problem
with four reliability components. The objective of the optimization
is to minimize the initial cost of the girder and the initial cost is
defined as:

c0ðxÞ ¼ 0:75CsLgAs þCsnsAvðhf þhw �aþ0:5bwÞþCcLgðbhf þbwhwÞ
ð23Þ

where Cs ¼ 50 and Cc ¼ 1 are the unit price of steel and concrete;
Lg ¼ 18:30 is the total length of the girder with unit of meters;
ns ¼ ð1=S1 þ 1=S2 þ 1=S3ÞLg=3 is the total number of stirrups; and
a ¼ 0:1m is the distance from the bottom fiber to the centroid of
tension reinforcement as shown in Fig. 12. The constraints are per
the design specification by AASHTO [32] with some other physical
limitations. There are four probabilistic constraints with each of
them corresponding to one possible failure mode of the girder.
The four failure modes considered in this problem are flexural fail-
ure at midspan and shear failure at the intervals 1, 2, and 3 which
are marked as I-1, I-2, and I-3 in Fig. 13. The threshold of failure
probability are the same for all of the four limit states, which is
taken as Pt

f ¼ 0:001350 (equivalent to bt ¼ 3:0). Readers are referred
to [31] for the expressions of the limit state functions as well as
other 23 deterministic constraints. By definition, the four limit state
functions are all explicit nonlinear functions of the design variables
and random variables. Some of the design formula provided by
AASHTO are not continuous functions due to the fact that the plastic
neutral axis can be either in the flange or web of the cross section.
Following the procedure implemented by Royset and Polak [6], the
optimization is performed individually for each case and the one
that yields minimal initial cost is taken as the solution.

The problem is solved in [6] using a sample average approxima-
tion (SAA) which employs Monte Carlo method to estimate the fail-
ure probability and its gradient. The accuracy of the approximation
is gradually improved during the optimization process due to the
increasing number of sampling. In this paper, we solve the same
problem using Pf and rxPf approximated by the proposed SML
method with orthogonal fitting scheme. The design point deter-
mined by the improved HLRF algorithm [28] is taken as the refer-
ence point. The initial design is taken as the same as in [6]. The
optimization is solved by the function ‘‘fmincon” in MATLAB
[33] optimization toolbox using the ‘‘active-set” strategy. The
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Fig. 11. Comparison of the obtained generalized reliability index b ¼ U�1ðPf Þ using different methods, and the numbers are the number of simulations performed by FERUM
for x1 ¼ �0:45; x1 ¼ 0:0, and x1 ¼ 0:45. (a) g1 (G1), (b) g2 (G2), (c) g3 (G3), (d) g4 (G4).
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Fig. 12. Cross section of reinforced concrete girder.
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Fig. 13. Shear reinforcement arrangement in reinforced concrete girder.

110 K. Liu et al. / Structural Safety 62 (2016) 101–115
optimization converges to an optimal design with 14 iterations in
35.47 CPU seconds as reported by MATLAB profiler on a laptop
with a 2.30 GHz CPU. The convergence of objective function is
shown in Fig. 14. Table 4 lists the obtained optimal design. The
result is compared with the result computed by SAA method in
[6] as shown in Table 4. We can observe that the two design are
quite close to each other with the design by SML method possess-
ing a slightly smaller objective. The main difference is the design of
shear reinforcement where the final design by the new method
yields a smaller area per stirrup but also smaller spacings between
them (i.e. S1; S2 and S3). Furthermore, plain MCS with c.o.v. = 0.05 is



Table 3
Statistics of normal random variables.

Variables Description Mean Coefficient of
variation

f y (Pa) Yield strength of
reinforcement

413:4� 106 0.15

f 0c (Pa) Compressive strength of
concrete

27:56� 106 0.15

PD (N/m) Dead load excluding weight 13:57� 103 0.20

ML (N�m) Live load bending moment 929� 103 0.243

PS1 (N) Live load shear in interval 1 138:31� 103 0.243

PS2 (N) Live load shear in interval 2 183:39� 103 0.243

PS3 (N) Live load shear in interval 3 228:51� 103 0.243

W (N/
m3)

Self weight of concrete 22:74� 103 0.10
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Fig. 14. Convergence in objective c0.

Table 4
Optimal design of reinforced concrete girder.

Parameter Design by SAA* Design by SML Difference (%)

As (m2) 0.008954 0.008916 �0.4412
b (m) 0.384 0.379 �1.2895
hf (m) 0.411 0.415 0.9794
bw (m) 0.197 0.196 �0.3839
hw (m) 0.789 0.785 �0.5102
Av (m2) 0.0001685 0.0001555 �7.7398
S1 (m) 0.535 0.457 �14.5762
S2 (m) 0.230 0.204 �11.2639
S3 (m) 0.143 0.129 �10.0270
c0 12.696 12.660 �0.2859

* Note: The data for the design by sample average approximation (SAA) method is
collected from [6].
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Fig. 15. Design domain and boundary conditions of 2.
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performed to check the failure probability of each failure modes of
the optimal design by SML method, and the obtained failure prob-
abilities are 0.001256, 0.001408, 0.001381, and 0.001309 which
are all very close to the target probability of failure Pt

f . Thus even-
tually the two designs yield similar behavior and cost. One possible
reason for the small differences could be that in the sample aver-
age approximation approach, for more than half of the total itera-
tions, the sensitivity is estimated only based on 40 simulations
which could be inaccurate, thus the optimization can be lead to
the neighborhood of a local minimum which cannot be further
improved by increasing the accuracy of the sensitivity estimation.
The MATLAB profiler shows that the total number that the SML
subroutine being called by the main function is only 144 times (36
for each reliability component), which means that the evaluation
of gradient of limit state functions with respect to design variables
only happened at most 2� 8� 144 ¼ 2304 times. Comparing to
the large number of gradient evaluations required by the sample
average approximation method, the proposed method shows a sig-
nificant advantage in computational cost. It should also be noted
that actually the sub-function of improved HLRF algorithm for
finding the design point spends up to 79.74% of the total computa-
tion time, and the function of SML method itself only takes a small
portion of time.
4.4. Application to reliability-based topology optimization

In this example, we are going to apply the proposed method to
reliability-based topology optimization (RBTO) problem on ground
structure [25,34,26]. The ground structure approach is one way to
do topology optimization which, is particularly good for optimal
designs of truss layouts. The optimal topology is extracted from a
very dense set of potential joints and bars by sizing the members
and allowing them to vanish. In this kind of problems, the evalua-
tion of the gradient of the limit state function with respect to
design variables involves finite element analysis which is expen-
sive to compute, thus a MCS-based method is not suitable. On
the other hand, the solution of optimal topology is quite sensitive
to the gradient information, which requires us to provide approx-
imations with good accuracy. The objective is to minimize the vol-
ume of the structure with a probabilistic constraint described in
terms of compliance. The problem formulation is given as follows:

min
x

V ¼ LTx

s:t: PðCmax � CðxÞ < 0Þ � Pt
f 6 0

xmin 6 x 6 xmax

ð24Þ

where L is a vector of element length; and the design variables x are
member areas of the ground structure. The limit state function
specifies a threshold on the compliance of structure. Compliance
is the inner product of the external force vector F and the nodal dis-
placement vector d, that is C ¼ FTd, which is reciprocal to the global
stiffness of a structure. The displacement field d is related to mem-
ber areas through the equilibrium equation KðxÞd ¼ F, where K is
the stiffness matrix. xmin and xmax are the lower and upper bounds
of member areas. A small value 10�4 is assigned to xmin in order
to prevent singularity of the stiffness matrix K [25].

We consider a crane arm design (i.e., the design of the top, hor-
izontal portion of a crane) in a domain shown in Fig. 15. The topol-
ogy optimization is performed on a 9� 3 ground structure with
level 6 nodal connectivity as shown in Fig. 16. The material of
the structure is linear elastic with Young’s Modulus E ¼ 100. The
structure is subject to two independent vertical loads acting on
the two tips of the crane. Each of them is assumed to follow the
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same marginal normal distribution with mean of 7.0 and standard
deviation 3.0. The limit on compliance is set to be Cmax ¼ 1:2, thus
the limit state function becomes Gðu;xÞ ¼ 1:2� FðuÞTdðxÞ where u
is the vector of transformed random variables.

A FORM-based single loop PMA is first applied to the problem.
This approach allows the MPP to be approximated by non-
iterative process. The target failure probability is Pt

f ¼ 0:0013 (i.e.

bt ¼ 3:0). Fig. 17 shows the obtained optimal design. The result
has an optimal volume equals to a dimensionless number 89.
The actual failure probability is computed after the optimization
by MCS with c.o.v. of 0.05 to be Pf ;MCS ¼ 0:6554 which is signifi-
cantly more than the target value. The design loads and domain
Fig. 16. Ground structure used to do RBTO which has 440 non-overlapping
members.

Fig. 17. Optimal topology by FORM-based single loop PMA.
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are all symmetric thus the optimal topology is expected be sym-
metric. However, the obtained numerical solution is apparently
not symmetric in topology. This is because of the accumulation
of error in the sensitivity calculation during the optimization pro-
cess. For this method, even if we make the failure probability esti-
mation very accurate using other reliability methods, due to the
error in the FORM-based approximation of sensitivity, it is likely
impossible to converge to the optimal design. If FORM-based RIA
is adopted, the optimization will not converge since the design
point obtained by HLRF method will oscillate among iterations of
the optimization.

Based on the approximation of both Pf and rxPf by the method
of SML, RIA is adopted to solve the problem. For this problem since
we can expect that the limit state function will have two design
points that are symmetric about the line u1 ¼ u2, we consider
two variations of the SML method: (1) orthogonal fitting with
design point as the reference point; and (2) orthogonal fitting with
the reference point to be in the direction of u1 ¼ u2. The optimal
structural layout obtained by variations (1) and (2) are presented
in Fig. 18a and b. The two results are almost the same in terms
of topology. The first one has an optimal volume equals 122 with
reliability index of 2.84 computed by post-optimization MCS while
the second one has a volume of 114 and reliability index of 2.76.
The second design of the SML method converges to a symmetric
optimal topology, because by specifying the reference point to be
on that potential symmetry axis, the accuracy of the approxima-
tion is improved a little comparing to the first one. Fig. 18c and d
show the contour plots of the limit state functions for the obtained
optimal designs. The fitting schemes are shown in dashed lines.
The final topologies present very reasonable structural layout, indi-
cating that for both variations of the SML, we obtain quite accurate
approximations of the failure probability and its sensitivity.
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5. Concluding remarks and extension

This paper proposes the so-called method of segmental multi-
point linearization or SML for fast and accurate numerical approx-
imation of the sensitivity of failure probability with respect to
design parameters. In the technical literature, an approximation
of the sensitivity based on FORM is typically used. However,
although the approximation requires very low computational cost,
it is often not sufficiently accurate. Approximations of the sensitiv-
ity based on MCS can be more accurate but this approach is limited
by the expensive computational cost. This paper fills this gap by pro-
viding a method that can provide relatively accurate approximations
of the parameter sensitivity of the failure probability without requiring
high computational cost (see Fig. 1).

The method takes a segmental linear fitting of the limit state
function, and constructs the approximation based on the analytical
integral expression of the gradient of the failure probability. The
method represents a general framework and, as such, could have
many variations that provide approximations with different accu-
racy depending on how the limit state surface is fitted. The paper
presents a few possible fitting schemes including tangent fitting,
step fitting, and orthogonal fitting. Among these fitting schemes,
the orthogonal fitting SML method is recommended for RBDO
applications due to its generality, simplicity and accuracy. The
other two fitting schemes, however, have the property of scalabil-
ity, meaning that the accuracy of the approximation can be
adjusted by adding or removing fitting points. Numerical examples
are given to compare the accuracy of the approximations by differ-
ent methods and different fitting schemes of the proposed method.
All the three variations of the SML method present large improve-
ments in terms of accuracy when compared to FORM-based
approximations.

The proposed SML method has potential to be further improved
in the future by developing new fitting schemes. Within the gen-
eral proposed SML method, other fitting schemes may be devel-
oped to provide more accurate approximations than the
currently proposed fitting schemes. In particular, the current fitting
schemes of our approach assumes that the limit state function is
smooth and continuous with respect to both random and design
variables. To apply the piece-wise fitting idea to address system
reliability problems, difficulties arise because the intersection of
the limit state surfaces might be no longer smooth and continuous
about the random variables and design variables, which has to be
taken into account when we generate the fitting hyperplanes. This
is a topic for future work.

In conclusion, we expect the SML method to be useful in the
RBDO field, especially for structural optimization, and whenever
the gradient of the failure probability needs to be computed with
good accuracy given limited computational resources (see Fig. 1).
Acknowledgement

We acknowledge support from the US NSF (National Science
Foundation) through Grants 1321661 and 1437535. In addition,
Ke Liu acknowledges support of the China Scholarship Council
(CSC), and Glaucio H. Paulino acknowledges support of the Ray-
mond Allen Jones Chair at the Georgia Institute of Technology.
The authors would like to extend their appreciation to Prof. Krister
Svanberg for providing a copy of his MMA (Method of Moving
Asymptotes) code which was used to solve the optimization prob-
lem in the last example of this paper.
Appendix A
Nomenclature
Abbrevations

c.o.v.
 coefficient of variation

CDF
 cumulative distribution function

CRBTO
 component reliability-based topology

optimization

FORM
 first order reliability method

HLRF
 Hassofer–Lind–Rackwitz–Fiessler

(algorithm)

KKT
 Karush–Kuhn–Tucker (optimality conditions)

MCS
 Monte Carlo simulation

MPP
 most probable point

OF
 orthogonal fitting (scheme)

PDF
 probability density function

PMA
 performance measure approach

RBDO
 reliability-based design optimization

RBTO
 reliability-based topology optimization

RIA
 reliability index approach

SAA
 sample average approximation

SF
 step fitting (scheme)

SML
 segmental multi-point linearization

SORM
 second order reliability method

SRBTO
 system reliability-based topology

optimization

TF
 tangent fitting (scheme)
Symbols
Gi
 the affine function describing hyperplane
segment i
S
 piecewise linearized limit state surface
Si
 hyperplane segments of a piecewise
linearized limit state surface
b
 reliability index

bt
 target reliability index

b1
 FORM approximation of reliability index

DD
 change of failure domain

k, ci
 Lagrange multipliers

û
 reduced random variables

ei
 orthonormal basis of space

ni
 normal direction of hyperplane segment i

Q
 rotational operator

u�
 most likely failure point (design point)

ut
 MPP

v, u
 random variables and the transformed

random variables

x
 design variables

U, u
 CDF and PDF of standard normal distribution

bi
 the distance from the origin to the

hyperplane that contains segment i

f vðvÞ
 joint PDF of random variables

g;G
 limit state function in original random space

and transformed random space

hi
 deterministic constraints

k1, k2, g
 user defined parameters of SML-OF

n
 number of random variables

Pf
 failure probability
Pt
f

target failure probability
S
 limit state surface

T
 probability preserving transformation

Wi
 weight for contribution of segment i
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Appendix B. A brief derivation of the parameter sensitivity of
the failure probability

In this section, we derive the analytical expression for the sen-
sitivity of failure probability with respect to design parameters.
Further derivations can be found in references [3,4]. Assume that
the limit state function is continuous and differentiable to first
order. If we take a perturbation in xi (denoted as dxi) on the design
variables, the limit state surface would evolve to a new shape in
the random variable space. If the movement of each point on the
limit state surface is denoted as du, then the following equation
describes the motion:

dGðu; xÞ ¼ @Gðu; xÞ
@xi

dxi þrT
uGðu; xÞdu ¼ 0 ðB:1Þ

The limit state surface in the u-space can be regarded as a level
set of the surface Gðu;xÞ ¼ 0 in the hybrid space of random vari-
ables u and design variables x at a certain level of xi. Each coordi-
nate of x is orthogonal to u in the hybrid space since we assume
that the random variables are independent from the design vari-
ables. Hence, only the normal component of du, which is due to
the perturbation dxi, would contribute to the propagation of limit
state surface. The normal component of du is along the same direc-
tion of ruGðu;xÞ. We rotate the coordinate system of the u-space
such that the axis e0

1 is in the opposite direction of ruGðu;xÞ. Let’s
denote the new coordinates as u0 ¼ Qu ¼ ½u0

1; û
0�T, where the rota-

tional operator Q should be a function of u and x. Notice that Q
is not the same for different points on limit state surface. Further-
more, we can always properly choose the rotational operator such
that it is in the special orthogonal group, which contains the
orthogonal matrices of determinant 1. Then Eq. (B.1) can be rewrit-
ten as:

dGðu; xÞ ¼ @Gðu; xÞ
@xi

dxi þ kruGðu;xÞkdu0
1 ¼ 0 ðB:2Þ

The change of failure probability due to a perturbation of x is the
integration of the probability density function (PDF) over the
change of the failure domain which is denoted as DD, as shown in
the shaded area in Fig. 19. Therefore:

dPf ¼
Z
Gðu;xþdxiÞ60

unðuÞdu�
Z
Gðu;xÞ60

unðuÞdu ¼
Z
DD
unðuÞdu

ðB:3Þ
Taking a small piece of the DD and calculating the volume under the
probability density function, we obtain:
2u

1u

( , ) 0G =u x

Failure 
Domain

1'u
2'u

DΔ

d fPδ
( , ) 0i iG xδ+ =u x e

Safe 
Domain

G∇u

Fig. 19. Geometric representation of a general continuous limit state surface.
ddPf ¼ unðu0Þdu0
1dû

0 ðB:4Þ
where dû0 ¼ du0

2du
0
3 . . . du

0
n and n is the number of random variables.

Substituting (B.2) into (B.4), we establish that:

ddPf ¼ �unðu0Þ @G
@xi

dxi
kruGk dû

0 ðB:5Þ

Taking the limit du ! 0 and integrating ddPf over the limit state
surface, an integral expression for the change of failure probability
is obtained:

dPf ¼
Z
S0
ddPf ¼

Z
S0
�unðu0Þ @G

@xi

dxi
kruGkdû

0 ðB:6Þ

where S and S0 are the limit state surface in original coordinates and
rotated coordinates. Rearranging the terms, we get the sensitivity of
the failure probability with respect to design variables as:

@Pf

@xi
¼ dPf

dxi
¼

Z
S0
�unðu0Þ @G

@xi

1
kruGkdû

0 ¼
Z
S0
�unðu0Þ
kruGk

@G
@xi

dS0 ðB:7Þ

A transformation of the coordinates should satisfies
dS0 ¼ ðdetQ ÞkQ�TnkdS, where n is the normal direction of the
infinitesimal piece of surface. Although Q is not a constant operator,
its determinant always equals 1, and kQ�Tnk also remains 1. Fur-
thermore, due to the rotational symmetry of the standard normal
space,unðu0Þ ¼ unðuÞ. Thus Eq. (B.7) can be rewritten in the original
coordinate as

@Pf

@xi
¼ �

Z
S

unðuÞ
kruGk

@G
@xi

dS ðB:8Þ

Applying Eq. (B.8) to each component of x, we can assembly the gra-
dient vector as:

rxPf ¼ �
Z
S

unðuÞ
kruGkrxGdS ðB:9Þ

Eq. (B.9) can also be found in reference [3,6]. A complete math-
ematical derivation for the sensitivity of probability integral with
respect to all kinds of parameters can be found in the paper by
Uryasev [4] published in 1994.

Appendix C. Pseudo code for orthogonal fitting SML

function SMLOF (reference point u1, limit state function
Gðu;xÞ, current design x)

//Initialize parameters
b1 ¼ ku1k
k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lnð0:1Þ þ b21

q
=b1; g ¼ 0:7; k2 ¼ minð1;3=b1Þ

e01 ¼ u1=ku1k
Find new orthogonal basis e01; e

0
2; . . . ; e

0
n.

//Assume Gð0;xÞ > 0
//Search the positive directions
for i ¼ 2;3; . . . ;n do
if Gðk1b1e0i;xÞ < 0 then
find bi > 0 that solves Gðbie0i;xÞ ¼ 0
ui ¼ bie0i
ci ¼ Uð�biÞ; pi ¼ 0

else
find bi > 0 that solves Gðk2b1e0i þ bie01;xÞ ¼ 0
ui ¼ k2b1e0i þ bie01
ci ¼ 0; pi ¼ Uð�gk2b1Þ //Partition

end if
end for

//Search the negative directions
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for i ¼ 1;2; . . . ;n do
if Gð�k1b1e0i;xÞ < 0 then
find biþn > 0 that solves Gð�biþne0i;xÞ ¼ 0
uiþn ¼ �biþne0i
ciþn ¼ Uð�biþnÞ; piþn ¼ 0

else if i ¼ 1 then
uiþn ¼ �e0i
ciþn ¼ 0; piþn ¼ 0

//This is not an active fitting point, the corresponding weight will
be 0
else
find biþn > 0 that solves Gð�k2b1e0i þ biþne01;xÞ ¼ 0
uiþn ¼ �k2b1e0i þ biþne01
ciþn ¼ 0; piþn ¼ Uð�gk2b1Þ

end if
end for

//First approximation of Pf

Pf ¼ 1�Qn
k¼1ð1� ck � ckþnÞ

//Compute weights for plane segments determined by
intersection fitting points
for j ¼ 1;2; . . . ;2n do
i ¼ ðj� 1Þ%nþ 1
if cj – 0 then

Wj ¼ �uðbjÞ
Qn

k¼1;k–ið1� ck � ckþnÞ=kruGðuj;xÞTe0ik
end if

end for
//Compute weights for plane segments determined by off-axis

fitting points
for j ¼ 2;3; . . . ;2n do
i ¼ ðj� 1Þ%nþ 1
if cj ¼ 0 then

Wj ¼ �uðbjÞpj
Qn

k¼2;k–ið1� ck � ckþnÞ=kruGðuj;xÞTe01k
Pf ¼ Pf þ ðUð�bjÞ � c1Þ

Qn
k¼2;k–ið1� ci � ciþnÞ //Update

approximation of Pf

cj ¼ pj //Avoid overlapping
end if

end for

rxPf ¼
P2n

k¼1WkrxGðuk;xÞ
return rxPf and Pf

end function
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